Population Genetics of Cell to Cell Movement of Wheat Streak Mosaic Virus

نویسندگان

  • Melissa S. Bartels
  • Melissa Sue Bartels
  • Jack Morris
چکیده

Previous workers in the lab created an infectious clone of Wheat Streak Mosaic Virus (WSMV) designated S1RN. An additional infectious clone with a GUS insert was also created to permit easy observation of virus movement (Gus1RN). A single point mutation made within the HC-Pro region created a mutant of WSMV designated PS81 that was unable to cause a systemic viral infection, although it could infect small clusters of cells on inoculated leaves. A similar mutation was made in the Gus1RN clone and it was designated Gus46. These particular mutants were capable of reverting back to wild type WSMV at high frequency and able to cause a systemic infection. We used this system to assess the multiplicity of infection (MOI) of the virus. MOI was calculated using the PS81 mutant as a control and the Gus46 as the experimental virus used to track virus movement. Wheat plants were inoculated with either PS81 or Gus46 and systemic leaves were collected at 20 and 28 days post inoculation (dpi), respectively. No significant difference was determined in the reversion rate between Gus46 and PS81. The reversion rate of Gus46 was determined and the number of virus genomes with a specific substitution at a particular location per cell was estimated to calculate the MOI of WSMV. The MOI for WSMV was determined experimentally to be approximately 11 genomes. This data supports our hypothesis that only a very limited number of virions escape and move from cell-to-cell during plant virus infections. The low MOI observed is a severe bottlenecking event for a virus population. This causes a low genetic diversity within the virus population. Narrow genetic bottlenecking during cell-to-cell movement causes a higher selective pressure on viruses and enables viruses to quickly select for adaptive genomes. This ability to select for adaptive genome might offset the negative outcome of bottlenecking, i.e. the loss of fitness by enabling a plant RNA virus to rapidly respond to environmental changes. Further research is necessary to fully understand and appreciate the role MOI has on virus population genetics. iv Acknowledgements: I thank all those who have supported and helped me with this research. To my family and friends who kept giving me encouragement until till I could see the light at the end of the tunnel. A big thank you to my committee members, Dr. Morris and Dr. Satyanarayana Tatineni for all their assistance and expertise. A special thanks to …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature-Dependent Wsm1 and Wsm2 Gene-Specific Blockage of Viral Long-Distance Transport Provides Resistance to Wheat streak mosaic virus and Triticum mosaic virus in Wheat.

Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of vi...

متن کامل

The Effect of High Temperature Treatment on Wheat Streak Mosaic Virus Resistance and Certain Resistance-Related Chemicals in Bread Wheat

Background and Aims: To evaluate the effect of temperature on wheat streak mosaic virus (WSMV) resistance phenotype, through total protein, phenol, and peroxidase activity in bread wheat, a factorial experiment was conducted using Adl-Cross (resistant) and Marvdasht (susceptible) cultivars. Materials and Methods: Results showed that incubation at 32C changed the gene expression for resistance ...

متن کامل

Evolution of Wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation.

Like many other plant RNA viruses, Wheat streak mosaic virus (WSMV) sequence diversity within and among infected plants is low given the large number of virions produced. This may be explained by considering aspects of plant virus life history. Intracellular replication of RNA viruses is predominately linear, not exponential, which means that the rate at which mutations accumulate also is linea...

متن کامل

Wheat Streak Mosaic Virus Infects Systemically Despite Extensive Coat Protein Deletions: 2 Identification of Virion Assembly and Cell-to-Cell Movement Determinants

23 24 Viral coat proteins function in virion assembly and virus biology in a tightly coordinated manner 25 with a role for virtually every amino acid. In this study, we demonstrated that the coat protein 26 (CP) of Wheat streak mosaic virus (WSMV) (genus Tritimovirus; family Potyviridae) is 27 unusually tolerant of extensive deletions with continued virion assembly and/or systemic 28 infection....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016